
Current Transducer LF 1005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1000 A$

Electrical data

I _{PN} I _P	Primary nominal r.m.s. current Primary current, measuring range			1000 0 ± 1500			
R_{M}	_		_	70°C R _{M max}	_ ^		
	with ± 15 V	@ $\pm 1000 A_{max}$	0	18	0	15	Ω
		@ ± 1200 A _{max}	0	7	0	4	Ω
	with ± 24 V	@ ± 1000 A _{max}	5	60.5	10	57.5	Ω
		@ ± 1500 A _{max}	5	24	10	21	Ω
I_{SN}	Secondary nominal r.m.s. current			200)		m A
K _N	Conversion ratio			1:5000			
V _C	Supply voltage (± 5 %)			± 1	5 24	1	V
I _c	Current consumption			20 (@±24V)+ I _s m			mA
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 r	nn	3		C	kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 10°C + 85°C	Typ ± 0.3	Max ± 0.4 ± 0.5	m A m A
t _, di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 100 DC 1	150	μs A/μs kHz

General data

_			40 05	00
I _A	Ambient operating temperature		- 10 + 85	°C
$T_{\rm s}$	Ambient storage temperature		- 25 + 100	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	48	Ω
Ü		$T_A = 85^{\circ}C$	51	Ω
m	Mass		500	g
	Standards 2)		EN 50178	

Features

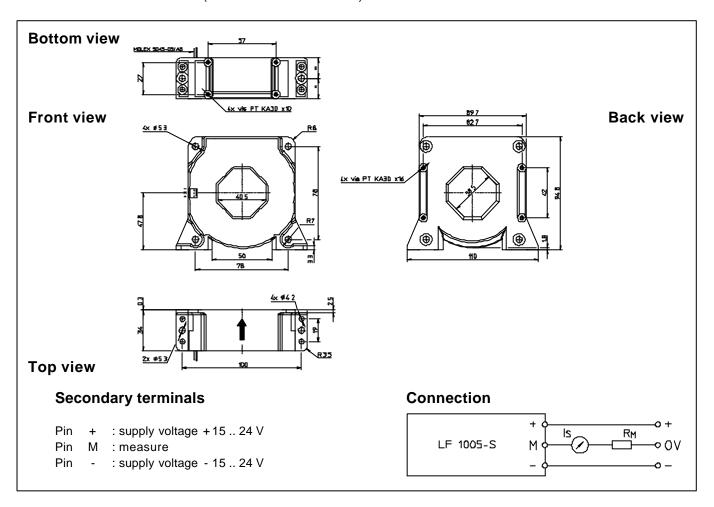
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) With a di/dt of 100 A/µs

020813/5

²⁾ A list of corresponding tests is available.

Dimensions LF 1005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

· General tolerance $\pm 0.5 \, \text{mm}$

 Transducer fastening Vertical position 2 holes Ø 5.3 mm

100°C. 2 M5 steel screws • Dynamic performances (di/dt and response time) are best

Remarks

• I_s is positive when I_p flows in the direction of the arrow.

• Temperature of the primary conductor should not exceed

4 Nm or 2.52 Lb. - Ft. Fastening torque, maxi with a single bar completely filling the primary hole. 4 holes Ø 4.2 mm • This is a standard model. For different versions (supply

4 M4 steel screws voltages, turns ratios, unidirectional measurements...), Fastening torque, maxi 3.2 Nm or 2.02 Lb. - Ft. please contact us. 4 holes \varnothing 2.25 mm depth 10 mm

Fastening torque, maxi

4 x PT KA30screws long 10 mm 0.9 Nm or 0.57 Lb. - Ft.

 Transducer fastening 4 holes Ø 5.3 mm Horizontal position

4 M5 steel screws 4 Nm or 2.52 Lb. - Ft.

Fastening torque, maxi

4 holes \varnothing 2.25 mm depth 16 mm 4 x PT KA30screws long 16 mm

Fastening torque, maxi • Primary through-hole

Connection of secondary

1 Nm or 0.63 Lb. - Ft. 40.5 x 40.5 mm Molex 5045-03/AG